Publications

What is a Publication?
13 Publications visible to you, out of a total of 13

Abstract (Expand)

This paper briefly describes the SABIO-RK database model for the storage of reaction kinetics information and the guidelines followed within the SABIO-RK project to annotate the kinetic data. Such annotations support the definition of cross links to other related databases and augment the semantics of the data stored in the database.

Authors: Firstname Lastname, Martin Golebiewski, Renate Kania, Firstname Lastname, Saqib Mir, Andreas Weidemann, Ulrike Wittig

Date Published: 14th Sep 2007

Publication Type: Not specified

Abstract (Expand)

Taverna is an application that eases the use and integration of the growing number of molecular biology tools and databases available on the web, especially web services. It allows bioinformaticians to construct workflows or pipelines of services to perform a range of different analyses, such as sequence analysis and genome annotation. These high-level workflows can integrate many different resources into a single analysis. Taverna is available freely under the terms of the GNU Lesser General Public License (LGPL) from http://taverna.sourceforge.net/.

Authors: Duncan Hull, Firstname Lastname, Robert Stevens, Firstname Lastname, Mathew R Pocock, Peter Li, Tom Oinn

Date Published: 18th Jul 2006

Publication Type: Not specified

Abstract (Expand)

Glycerol, a major by-product of ethanol fermentation by Saccharomyces cerevisiae, is of significant importance to the wine, beer, and ethanol production industries. To gain a clearer understanding of and to quantify the extent to which parameters of the pathway affect glycerol flux in S. cerevisiae, a kinetic model of the glycerol synthesis pathway has been constructed. Kinetic parameters were collected from published values. Maximal enzyme activities and intracellular effector concentrations were determined experimentally. The model was validated by comparing experimental results on the rate of glycerol production to the rate calculated by the model. Values calculated by the model agreed well with those measured in independent experiments. The model also mimics the changes in the rate of glycerol synthesis at different phases of growth. Metabolic control analysis values calculated by the model indicate that the NAD(+)-dependent glycerol 3-phosphate dehydrogenase-catalyzed reaction has a flux control coefficient (C(J)v1) of approximately 0.85 and exercises the majority of the control of flux through the pathway. Response coefficients of parameter metabolites indicate that flux through the pathway is most responsive to dihydroxyacetone phosphate concentration (R(J)DHAP= 0.48 to 0.69), followed by ATP concentration (R(J)ATP = -0.21 to -0.50). Interestingly, the pathway responds weakly to NADH concentration (R(J)NADH = 0.03 to 0.08). The model indicates that the best strategy to increase flux through the pathway is not to increase enzyme activity, substrate concentration, or coenzyme concentration alone but to increase all of these parameters in conjunction with each other.

Authors: Garth R Cronwright, Johann M Rohwer, Bernard A Prior

Date Published: 30th Aug 2002

Publication Type: Not specified

Abstract (Expand)

The involvement of nicotinamide adenine nucleotides (NAD(+), NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using (13)C and (31)P NMR to monitor in vivo the kinetics of the pools of NAD(+), NADH, ATP, inorganic phosphate (P(i)), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid specifically labeled on carbon 5 was synthesized and used in the growth medium as a precursor of pyridine nucleotides to allow for in vivo detection of (13)C-labeled NAD(+) and NADH. The capacity of L. lactis MG1363 to regenerate NAD(+) was manipulated either by turning on NADH oxidase activity or by knocking out the gene encoding lactate dehydrogenase (LDH). An LDH(-) deficient strain was constructed by double crossover. Upon supply of glucose, NAD(+) was constant and maximal (approximately 5 mm) in the parent strain (MG1363) but decreased abruptly in the LDH(-) strain both under aerobic and anaerobic conditions. NADH in MG1363 was always below the detection limit as long as glucose was available. The rate of glucose consumption under anaerobic conditions was 7-fold lower in the LDH(-) strain and NADH reached high levels (2.5 mm), reflecting severe limitation in regenerating NAD(+). However, under aerobic conditions the glycolytic flux was nearly as high as in MG1363 despite the accumulation of NADH up to 1.5 mm. Glyceraldehyde-3-phosphate dehydrogenase was able to support a high flux even in the presence of NADH concentrations much higher than those of the parent strain. We interpret the data as showing that the glycolytic flux in wild type L. lactis is not primarily controlled at the level of glyceraldehyde-3-phosphate dehydrogenase by NADH. The ATP/ADP/P(i) content could play an important role.

Authors: Ana Rute Neves, Rita Ventura, Nahla Mansour, Claire Shearman, Michael J Gasson, Christopher Maycock, Ana Ramos, Helena Santos

Date Published: 13th May 2002

Publication Type: Not specified

Abstract (Expand)

This paper examines whether the in vivo behavior of yeast glycolysis can be understood in terms of the in vitro kinetic properties of the constituent enzymes. In nongrowing, anaerobic, compressed Saccharomyces cerevisiae the values of the kinetic parameters of most glycolytic enzymes were determined. For the other enzymes appropriate literature values were collected. By inserting these values into a kinetic model for glycolysis, fluxes and metabolites were calculated. Under the same conditions fluxes and metabolite levels were measured. In our first model, branch reactions were ignored. This model failed to reach the stable steady state that was observed in the experimental flux measurements. Introduction of branches towards trehalose, glycogen, glycerol and succinate did allow such a steady state. The predictions of this branched model were compared with the empirical behavior. Half of the enzymes matched their predicted flux in vivo within a factor of 2. For the other enzymes it was calculated what deviation between in vivo and in vitro kinetic characteristics could explain the discrepancy between in vitro rate and in vivo flux.

Authors: Firstname Lastname, J Passarge, C A Reijenga, E Esgalhado, C C van der Weijden, M Schepper, M C Walsh, B M Bakker, K van Dam, H V Westerhoff, Firstname Lastname

Date Published: 22nd Aug 2000

Publication Type: Not specified

Abstract (Expand)

15 untrained women were subjected to a walking treadmill test to determine the influence of maximal exercise upon synthesis of erythrocyte 2,3 DPG. Although there was a 9.8% increase in the 2,3 DPG content following exercise, there was a concomitant 9.4% increase in the hemoglobin level; therefore, when 2,3 DPG is expressed as a ratio to hemoglobin (See Article), there was no significant change as a result of exercise stress. It was suggested that three additive factors produced during strenuous exercise; decreased pH; increased hemoglobin concentration; and increased CO2 production result in by-product inhibition of 2,3 DPG synthesis. It is concluded that 2,3 DPG does not provide a physiologic benefit in the adaptation of the oxygen transport system to exercise.

Authors: H W Bonner, C A Tate, C K Buffington

Date Published: 5th Dec 1975

Publication Type: Not specified

Powered by
(v.1.14.0)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH