Publications

16 Publications visible to you, out of a total of 16

Abstract (Expand)

This paper examines whether the in vivo behavior of yeast glycolysis can be understood in terms of the in vitro kinetic properties of the constituent enzymes. In nongrowing, anaerobic, compressed Saccharomyces cerevisiae the values of the kinetic parameters of most glycolytic enzymes were determined. For the other enzymes appropriate literature values were collected. By inserting these values into a kinetic model for glycolysis, fluxes and metabolites were calculated. Under the same conditions fluxes and metabolite levels were measured. In our first model, branch reactions were ignored. This model failed to reach the stable steady state that was observed in the experimental flux measurements. Introduction of branches towards trehalose, glycogen, glycerol and succinate did allow such a steady state. The predictions of this branched model were compared with the empirical behavior. Half of the enzymes matched their predicted flux in vivo within a factor of 2. For the other enzymes it was calculated what deviation between in vivo and in vitro kinetic characteristics could explain the discrepancy between in vitro rate and in vivo flux.

Authors: Firstname Lastname, J Passarge, C A Reijenga, E Esgalhado, C C van der Weijden, M Schepper, M C Walsh, B M Bakker, K van Dam, H V Westerhoff, Firstname Lastname

Date Published: 22nd Aug 2000

Publication Type: Not specified

Abstract (Expand)

15 untrained women were subjected to a walking treadmill test to determine the influence of maximal exercise upon synthesis of erythrocyte 2,3 DPG. Although there was a 9.8% increase in the 2,3 DPG content following exercise, there was a concomitant 9.4% increase in the hemoglobin level; therefore, when 2,3 DPG is expressed as a ratio to hemoglobin (See Article), there was no significant change as a result of exercise stress. It was suggested that three additive factors produced during strenuous exercise; decreased pH; increased hemoglobin concentration; and increased CO2 production result in by-product inhibition of 2,3 DPG synthesis. It is concluded that 2,3 DPG does not provide a physiologic benefit in the adaptation of the oxygen transport system to exercise.

Authors: H W Bonner, C A Tate, C K Buffington

Date Published: 5th Dec 1975

Publication Type: Not specified

Powered by
(v.1.12.0)
Copyright © 2008 - 2022 The University of Manchester and HITS gGmbH

By continuing to use this site you agree to the use of cookies